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9.8 Power Series

Understand the definition of a power series.
Find the radius and interval of convergence of a power series.
Determine the endpoint convergence of a power series.
Differentiate and integrate a power series.

Power Series
In Section 9.7, you were introduced to the concept of approximating functions by
Taylor polynomials. For instance, the function can be approximated by its
third-degree Maclaurin polynomial

In that section, you saw that the higher the degree of the approximating polynomial, the
better the approximation becomes.

In this and the next two sections, you will see that several important types of
functions, including can be represented exactly by an infinite series called a
power series. For example, the power series representation for is

For each real number it can be shown that the infinite series on the right converges to
the number Before doing this, however, some preliminary results dealing with power
series will be discussed—beginning with the next definition.

Power Series

a. The following power series is centered at 0.

b. The following power series is centered at 

c. The following power series is centered at 1.
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Definition of Power Series

If is a variable, then an infinite series of the form

is called a power series. More generally, an infinite series of the form

is called a power series centered at where is a constant.cc,
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Exploration

Graphical Reasoning
Use a graphing utility to 
approximate the graph of
each power series near 
(Use the first several terms
of each series.) Each series 
represents a well-known
function. What is the 
function?

a.

b.
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d.
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REMARK To simplify the
notation for power series,
assume that even
when x � c.

�x � c�0 � 1,
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Radius and Interval of Convergence
A power series in can be viewed as a function of 

where the domain of is the set of all for which the power series converges.
Determination of the domain of a power series is the primary concern in this section.
Of course, every power series converges at its center because

So, always lies in the domain of Theorem 9.20 (see below) states that the domain
of a power series can take three basic forms: a single point, an interval centered at or
the entire real number line, as shown in Figure 9.17.

The domain of a power series has only three 
basic forms: a single point, an interval centered 
at or the entire real number line.
Figure 9.17
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THEOREM 9.20 Convergence of a Power Series

For a power series centered at precisely one of the following is true.

1. The series converges only at 

2. There exists a real number such that the series converges absolutely 
for

and diverges for

3. The series converges absolutely for all 

The number is the radius of convergence of the power series. If the series 
converges only at then the radius of convergence is If the series
converges for all then the radius of convergence is The set of all 
values of for which the power series converges is the interval of convergence
of the power series.

A proof of this theorem is given in Appendix A.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

x
R � �.x,
R � 0.c,

R

x.

�x � c� > R.

�x � c� < R

R > 0

c.

c,
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To determine the radius of convergence of a power series, use the Ratio Test, as
demonstrated in Examples 2, 3, and 4.

Finding the Radius of Convergence

Find the radius of convergence of 

Solution For you obtain

For any fixed value of such that let Then

Therefore, by the Ratio Test, the series diverges for and converges only at its
center, 0. So, the radius of convergence is 

Finding the Radius of Convergence

Find the radius of convergence of

Solution For let Then

By the Ratio Test, the series converges for and diverges for 
Therefore, the radius of convergence of the series is 

Finding the Radius of Convergence

Find the radius of convergence of 

Solution Let Then

For any fixed value of this limit is 0. So, by the Ratio Test, the series converges for
all Therefore, the radius of convergence is R � �.x.
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Endpoint Convergence
Note that for a power series whose radius of convergence is a finite number Theorem 9.20
says nothing about the convergence at the endpoints of the interval of convergence.
Each endpoint must be tested separately for convergence or divergence. As a result, the
interval of convergence of a power series can take any one of the six forms shown in
Figure 9.18.

Intervals of convergence
Figure 9.18

Finding the Interval of Convergence

See LarsonCalculus.com for an interactive version of this type of example.

Find the interval of convergence of

Solution Letting produces

So, by the Ratio Test, the radius of convergence is Moreover, because the series
is centered at 0, it converges in the interval This interval,
however, is not necessarily the interval of convergence. To determine this, you must test
for convergence at each endpoint. When you obtain the divergent harmonic
series

Diverges when

When you obtain the convergent alternating harmonic series

Converges when

So, the interval of convergence for the series is as shown in Figure 9.19.

Figure 9.19
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Finding the Interval of Convergence

Find the interval of convergence of 

Solution Letting produces

By the Ratio Test, the series converges for 

or So, the radius of convergence is Because the series is centered
at it will converge in the interval Furthermore, at the endpoints, you have

Diverges when 

and

Diverges when

both of which diverge. So, the interval of convergence is as shown in Figure 9.20.

Finding the Interval of Convergence

Find the interval of convergence of

Solution Letting produces

So, the radius of convergence is Because the series is centered at it
converges in the interval When you obtain the convergent series

Converges when 

When you obtain the convergent alternating series

Converges when 

Therefore, the interval of convergence is ��1, 1	.
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Differentiation and Integration of Power Series
Power series representation of functions has played an important role in the 
development of calculus. In fact, much of Newton’s work with differentiation and 
integration was done in the context of power series—especially his work with 
complicated algebraic functions and transcendental functions. Euler, Lagrange,
Leibniz, and the Bernoullis all used power series extensively in calculus.

Once you have defined a function with a power series, it is natural to wonder how
you can determine the characteristics of the function. Is it continuous? Differentiable?
Theorem 9.21, which is stated without proof, answers these questions.

Theorem 9.21 states that, in many ways, a function defined by a power series
behaves like a polynomial. It is continuous in its interval of convergence, and both its
derivative and its antiderivative can be determined by differentiating and integrating
each term of the power series. For instance, the derivative of the power series 

is

Notice that Do you recognize this function?f��x� � f�x�.
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THEOREM 9.21 Properties of Functions Defined by Power Series

If the function

has a radius of convergence of then, on the interval 

is differentiable (and therefore continuous). Moreover, the derivative and 
antiderivative of are as follows.

1.

2.

The radius of convergence of the series obtained by differentiating or integrating 
a power series is the same as that of the original power series. The interval of 
convergence, however, may differ as a result of the behavior at the endpoints.
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JAMES GREGORY (1638–1675)

One of the earliest mathematicians
to work with power series was a
Scotsman, James Gregory. He
developed a power series method
for interpolating table values––a
method that was later used by
Brook Taylor in the development
of Taylor polynomials and Taylor
series.

The Granger Collection
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Intervals of Convergence for and 

Consider the function

Find the interval of convergence for each of the following.

a. b. c.

Solution By Theorem 9.21, you have

and

By the Ratio Test, you can show that each series has a radius of convergence of 
Considering the interval you have the following.

a. For the series

Interval of convergence:

converges for and its interval of convergence is See Figure 9.21(a).

b. For the series

Interval of convergence:

converges for and diverges for So, its interval of convergence is
See Figure 9.21(b).

c. For the series

Interval of convergence:

diverges for and its interval of convergence is See Figure 9.21(c).

(a) (b) (c)

Figure 9.21

From Example 8, it appears that of the three series, the one for the derivative,
is the least likely to converge at the endpoints. In fact, it can be shown that if the series
for converges at the endpoints 
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654 Chapter 9 Infinite Series

Finding the Center of a Power Series In Exercises 1–4,
state where the power series is centered.

1.

2.

3.

4.

Finding the Radius of Convergence In Exercises 5–10,
find the radius of convergence of the power series.

5. 6.

7. 8.

9. 10.

Finding the Interval of Convergence In Exercises
11–34, find the interval of convergence of the power series. (Be
sure to include a check for convergence at the endpoints of the
interval.)

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.

Finding the Radius of Convergence In Exercises 35 and
36, find the radius of convergence of the power series, where

and is a positive integer.

35. 36.

Finding the Interval of Convergence In Exercises
37–40, find the interval of convergence of the power series. (Be
sure to include a check for convergence at the endpoints of the
interval.)

37.

38.

39.

40.

Writing an Equivalent Series In Exercises 41–44, write
an equivalent series with the index of summation beginning at

41.

42.

43.

44.

Finding Intervals of Convergence In Exercises 45–48,
find the intervals of convergence of (a) (b) (c) 
and (d) Include a check for convergence at the 
endpoints of the interval.

45.

46.

47.
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9.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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9.8 Power Series 655

57. Using Power Series Let and

(a) Find the intervals of convergence of and 

(b) Show that 

(c) Show that 

(d) Identify the functions and 

58. Using a Power Series Let 

(a) Find the interval of convergence of 

(b) Show that 

(c) Show that 

(d) Identify the function 

Differential Equation In Exercises 59–64, show that the
function represented by the power series is a solution of the 
differential equation.

59.

60.

61.

62.

63.

64.

65. Bessel Function The Bessel function of order 0 is

(a) Show that the series converges for all 

(b) Show that the series is a solution of the differential 
equation 

(c) Use a graphing utility to graph the polynomial composed
of the first four terms of 

(d) Approximate accurate to two decimal places.

66. Bessel Function The Bessel function of order 1 is

(a) Show that the series converges for all 

(b) Show that the series is a solution of the differential equation

(c) Use a graphing utility to graph the polynomial composed
of the first four terms of 

(d) Show that J0��x� � �J1�x�.
J1.

x2 J1	 � x J1� � �x2 � 1� J1 � 0.

x.

J1�x� � x �
�

k�0
 

��1�k x2k

22k�1 k!�k � 1�!.

�1
0  J0 dx

J0.

x2 J0	 � x J0� � x2 J0 � 0.

x.

J0�x� � �
�

k�0
 
��1�k x2k

22k�k!�2 .

y	 � x 2 y � 0

y � 1 � �
�

n�1
 

��1�n x 4n

22n n! � 3 � 7 � 11 .  .  . �4n � 1�,

y	 � xy� � y � 0y � �
�

n�0
 

x2n

2n n!
,

y	 � y � 0y � �
�

n�0
 

x2n

�2n�!,

y	 � y � 0y � �
�

n�0
 

x2n�1

�2n � 1�!,

y	 � y � 0y � �
�

n�0
 
��1�n x2n

�2n�!

y	 � y � 0y � �
�

n�0
 
��1�n x2n�1

�2n � 1�! ,

f.

f �0� � 1.

f��x� � f �x�.
f.

f �x� � �
�

n�0
 
xn

n!
.

g.f

g��x� � �f �x�.
f��x� � g�x�.

g.f

g�x� � �
�

n�0
 
��1�n x2n

�2n�! .

f �x� � �
�

n�0
 
��1�n x2n�1

�2n � 1�!WRITING ABOUT CONCEPTS
49. Power Series Define a power series centered at 

50. Radius of Convergence Describe the radius of 
convergence of a power series.

51. Interval of Convergence Describe the interval of 
convergence of a power series.

52. Domain of a Power Series Describe the three basic
forms of the domain of a power series.

53. Using a Power Series Describe how to differentiate
and integrate a power series with a radius of convergence

Will the series resulting from the operations of 
differentiation and integration have a different radius of
convergence? Explain.

54. Conditional or Absolute Convergence Give
examples that show that the convergence of a power series
at an endpoint of its interval of convergence may be either 
conditional or absolute. Explain your reasoning.

55. Writing a Power Series Write a power series that
has the indicated interval of convergence. Explain your
reasoning.

(a) (b)

(c) (d) ��2, 6���1, 0�
��1, 1	��2, 2�

R.

c.

56. HOW DO YOU SEE IT? Match the graph of
the first 10 terms of the sequence of partial sums
of the series

with the indicated value of the function. The
graphs are labeled (i), (ii), (iii), and (iv). Explain
how you made your choice.

(i) (ii)

(iii) (iv)

(a) (b)

(c) (d) g��2�g�3�
g�2�g�1�

Sn

n
2 4 6 8

1
3
4

1
2

1
4

Sn

n
2

2

4 6 8

1

Sn

n
2

2
4
6
8

10
12

4 6 8

Sn

n
2

2

4 6 8

1

3

	
�

g�x� � �
�

n�0
 �x

3�
n
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656 Chapter 9 Infinite Series

67. Investigation The interval of convergence of the geometric

series is 

(a) Find the sum of the series when Use a graphing 
utility to graph the first six terms of the sequence of partial
sums and the horizontal line representing the sum of the
series.

(b) Repeat part (a) for 

(c) Write a short paragraph comparing the rates of convergence
of the partial sums with the sums of the series in parts (a)
and (b). How do the plots of the partial sums differ as they
converge toward the sum of the series?

(d) Given any positive real number there exists a positive
integer such that the partial sum

Use a graphing utility to complete the table.

68. Investigation The interval of convergence of the series

is 

(a) Find the sum of the series when Use a graphing 
utility to graph the first six terms of the sequence of partial
sums and the horizontal line representing the sum of the
series.

(b) Repeat part (a) for 

(c) Write a short paragraph comparing the rates of convergence
of the partial sums with the sums of the series in parts (a)
and (b). How do the plots of the partial sums differ as they
converge toward the sum of the series?

(d) Given any positive real number there exists a positive
integer such that the partial sum

Use a graphing utility to complete the table.

Identifying a Function In Exercises 69–72, the series 
represents a well-known function. Use a computer algebra 
system to graph the partial sum and identify the function
from the graph.

69.

70.

71.

72.

True or False? In Exercises 73–76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

73. If the power series converges for then it also

converges for 

74. It is possible to find a power series whose interval of 
convergence is 

75. If the interval of convergence for is then the 

interval of convergence for is 

76. If converges for then

77. Proof Prove that the power series

has a radius of convergence of when and are 
positive integers.

78. Using a Power Series Let

where the coefficients are and for 

(a) Find the interval of convergence of the series.

(b) Find an explicit formula for 

79. Using a Power Series Let where
for 

(a) Find the interval of convergence of the series.

(b) Find an explicit formula for 

80. Proof Prove that if the power series has a radius of

convergence of then has a radius of convergence

of 

81. Proof For let and Prove that if the
interval of convergence of the series

is then the series converges conditionally at
x0 � R.

�x0 � R, x0 � R	,

�
�

n�0
 cn�x � x0�n

cn > 0.R > 0n > 0,

�R.

�
�

n�0
 cn x2nR,

�
�

n�0
 cn x n

f �x�.

n 
 0.cn�3 � cn

f �x� � �
�

n�0
 cn xn,

g�x�.

n 
 0.c2n�1 � 2c2n � 1

g�x� � 1 � 2x � x2 � 2x3 � x4 � .  .  . 

qpR � �

�
�

n�0
 

�n � p�!
n!�n � q�! xn


1

0
 f �x� dx � �

�

n�0
 

an

n � 1
.

�x� < 2,f �x� � �
�

n�0
 an xn

�0, 2�.�
�

n�0
 an�x � 1�n

��1, 1�,�
�

n�0
 an xn

�0, ��.

x � �2.

x � 2,�
�

n�1
 an xn

�1 � x � 1f �x� � �
�

n�0
 ��1�n 

x2n�1

2n � 1
,

�1 < x < 1f �x� � �
�

n�0
 ��1�n xn,

f �x� � �
�

n�0
 ��1�n 

x2n�1

�2n � 1�!

f �x� � �
�

n�0
 ��1�n 

x2n

�2n�!
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 �5

4�
n

> M.

N
M,

x � �
5
2.

x �
5
2.

��4, 4�.�
�

n�0
 �x

4�
n

9781285057095_0908.qxp  9/18/12  8:34 AM  Page 656

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


